Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1181317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485518

RESUMO

Introduction: Conservation agriculture (CA) is gaining attention in the South Asia as an environmentally benign and sustainable food production system. The knowledge of the soil bacterial community composition along with other soil properties is essential for evaluating the CA-based management practices for achieving the soil environment sustainability and climate resilience in the rice-wheat-greengram system. The long-term effects of CA-based tillage-cum-crop establishment (TCE) methods on earthworm population, soil parameters as well as microbial diversity have not been well studied. Methods: Seven treatments (or scenarios) were laid down with the various tillage (wet, dry, or zero-tillage), establishment method (direct-or drill-seeding or transplantation) and residue management practices (mixed with the soil or kept on the soil surface). The soil samples were collected after 7 years of experimentation and analyzed for the soil quality and bacterial diversity to examine the effect of tillage-cum-crop establishment methods. Results and Discussion: Earthworm population (3.6 times), soil organic carbon (11.94%), macro (NPK) (14.50-23.57%) and micronutrients (Mn, and Cu) (13.25 and 29.57%) contents were appreciably higher under CA-based TCE methods than tillage-intensive farming practices. Significantly higher number of OTUs (1,192 ± 50) and Chao1 (1415.65 ± 14.34) values were observed in partial CA-based production system (p ≤ 0.05). Forty-two (42) bacterial phyla were identified across the scenarios, and Proteobacteria, Actinobacteria, and Firmicutes were the most dominant in all the scenarios. The CA-based scenarios harbor a high abundance of Proteobacteria (2-13%), whereas the conventional tillage-based scenarios were dominated by the bacterial phyla Acidobacteria and Chloroflexi and found statistically differed among the scenarios (p ≤ 0.05). Composition of the major phyla, i.e., Proteobacteria, Actinobacteria, and Firmicutes were associated differently with either CA or farmers-based tillage management practices. Overall, the present study indicates the importance of CA-based tillage-cum-crop establishment methods in shaping the bacterial diversity, earthworms population, soil organic carbon, and plant nutrient availability, which are crucial for sustainable agricultural production and resilience in agro-ecosystem.

2.
Life (Basel) ; 12(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36143326

RESUMO

Nilaparvata lugens is the main rice pest in India. Until now, the Indian N. lugens mitochondrial genome has not been sequenced, which is a very important basis for population genetics and phylogenetic evolution studies. An attempt was made to sequence two examples of the whole mitochondrial genome of N. lugens biotype 4 from the Indian population for the first time. The mitogenomes of N. lugens are 16,072 and 16,081 bp long with 77.50% and 77.45% A + T contents, respectively, for both of the samples. The mitochondrial genome of N. lugens contains 37 genes, including 13 protein-coding genes (PCGs) (cox1-3, atp6, atp8, nad1-6, nad4l, and cob), 22 transfer RNA genes, and two ribosomal RNA (rrnS and rrnL) subunits genes, which are typical of metazoan mitogenomes. However, both samples of N. lugens mitogenome in the present study retained one extra copy of the trnC gene. Additionally, we also found 93 bp lengths for the atp8 gene in both of the samples, which were 60-70 bp less than that of the other sequenced mitogenomes of hemipteran insects. The phylogenetic analysis of the 19 delphacids mitogenome dataset yielded two identical topologies when rooted with Ugyops sp. in one clade, and the remaining species formed another clade with P. maidis and M. muiri being sisters to the remaining species. Further, the genus Nilaparvata formed a separate subclade with the other genera (Sogatella, Laodelphax, Changeondelphax, and Unkanodes) of Delphacidae. Additionally, the relationship among the biotypes of N. lugens was recovered as the present study samples (biotype-4) were separated from the three biotypes reported earlier. The present study provides the reference mitogenome for N. lugens biotype 4 that may be utilized for biotype differentiation and molecular-aspect-based future studies of N. lugens.

3.
Sci Rep ; 12(1): 3753, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260662

RESUMO

Conservation agriculture (CA), which encompasses minimum soil disturbance, residue retention either through crop residue, or cover crops and crop diversification-based crop management practices can modify the status of pest dynamics and activities under the changing climatic scenarios. CA has been advocated extensively to optimize the use of available resources, maintain the environmental quality, enhance crop productivity, and reduce the climate change impacts. Information related to the impacts of long-term CA-production systems under rice-based cropping systems on pest status is lacking, particularly in middle Indo-Gangetic Plains (MIGP). Under CA, puddling is completely avoided, and rice is directly sown or transplanted to maintain better soil health. Different sets of experimentations including farmers practice, partial CA and full CA (CA) as treatments in rice-based cropping systems, were established from 2009, 2015 and 2016 to understand the long-term impacts of CA on pest dynamics. In this study, direct and indirect effects of tillage (zero, reduced and conventional tillage), residue retention and cropping sequences on abundance and damage by pests were investigated. After 4-5 years of experimentation, populations of oriental armyworm [Mythinma (Leucania) (Pseudaletia) separata (Wlk.)] in wheat, mealybug [Brevennia rehi (Lindinger)] and bandicoot rat [Bandicota bengalensis (Gray)] in rice were found to increase abnormally in CA-based production systems. Conventionally tilled plots had a significant negative effect while residue load in zero-tilled plots had a significant positive effect on larval population build-up of M. separata. Zero tillage had a higher infestation of mealybug (52-91% infested hills) that used grassy weeds (Echinochloa colona, Echinochloa crusgalli, Cynodon dactylon, Leptochloa chinensis and Panicum repense) as alternate hosts. Cropping sequences and no disturbance of soil and grassy weeds had higher live burrow counts (4.2 and 13.7 burrows as compared to 1.47 and 7.53 burrows per 62.5 m2 during 2019-2020 and 2020-2021, respectively) and damaged tillers (3.4%) in CA-based practices. Based on the present study, pest management strategies in CA need to be revisited with respect to tillage, residue retention on soil surface, grassy weeds in field and cropping sequences to deliver the full benefits of CA in MIGP to achieve the sustainable development goals under the climate change scenarios.


Assuntos
Oryza , Agricultura/métodos , Ásia , Produtos Agrícolas , Solo/química
4.
Bull Entomol Res ; 111(1): 111-119, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32686624

RESUMO

Mexican beetle, Zygogramma bicolorata Pallister (Coleptera: Chrysomelidae) is a potential weed control biocontrol agent in Australia, India and other countries. Its grubs and adults feed on the leaves of parthenium weed, Parthenium hysterophorus and check the further growth of the plant. Experiments were conducted to understand host plant-mediated effects of elevated temperature and elevated CO2 on biocontrol agent Z. bicolorata. Food consumption, utilization, ecological efficiency and life-table parameters of Z. bicolorata were studied in grubs and adults stage up to diapause. Reduction of leaf nitrogen in parthenium weed foliage with a significant increase in carbon and C:N ratio was recorded at elevated CO2. Elevated CO2 and temperature had no effect on adult longevity before diapausing. Duration of egg's hatching, specific stages of grub and pupa of Z. bicolorata were significantly longer when beetles fed on leaves grown under elevated CO2 but these parameters decreased significantly on leaves grown under elevated temperature. Significantly high consumption rates with low growth and digestion conversions were observed under elevated CO2 and/or in coupled with elevated temperature. Elevated CO2 and temperature-grown parthenium weed foliage also had a significant effect on Z. bicolorata intrinsic rate of increase (R), finite rate of increase (λ), mean generation time (T), and gross reproductive rate. Changed quality of parthenium weed leaves in elevated CO2 and temperature levels resulted in the increase of consumption, slower food conversion rates, increase in developmental period with reduced reproduction efficiency of Z. bicolorata. Our results indicate that the reproduction efficiency of Z. bicolorata is likely to be reduced as the climate changes, despite increased feeding rates exhibited by grubs and adult beetles on parthenium weed foliage.


Assuntos
Asteraceae/química , Dióxido de Carbono/metabolismo , Besouros/crescimento & desenvolvimento , Temperatura Alta , Controle Biológico de Vetores , Controle de Plantas Daninhas , Animais , Besouros/fisiologia , Crescimento Demográfico , Reprodução
5.
Sci Rep ; 10(1): 11146, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636432

RESUMO

Presently, rice-fallows are targeted for cropping intensification in South Asia. Rice-fallows a rainfed mono-cropping system remain fallow after rice due to lack of irrigation facilities and poor socio-economic condition of the farmers. Nevertheless, there is the scope of including ecologically adaptable winter crops in water-limited rice-fallow conditions with effective moisture conservation practices. The study aimed to identify the winter-crops that are adaptable and productive in rice-fallow conditions and to evaluate the different tillage-based crop establishment practices for soil moisture conservation, grain yield, economics, and sustainability parameters. Six different crop establishment and residue management (CERM) practices viz., zero-tillage direct seeded rice (ZTDSR), zero-tillage transplanted rice (ZTTPR), puddled transplanted rice (PTR), ZTDSR with rice residue retention (ZTDSRR+), ZTTPR with rice residue retention (ZTTPRR+), PTR with rice residue retention (PTRR+) as main-plot treatment and five winter crops (chickpea, lentil, safflower, linseed, and mustard) as sub-plot treatment were evaluated in a split-plot design. The productivity of grain legumes (chickpea and lentil) was higher over oilseed crops in rice-fallow conditions with an order of chickpea > lentil > safflower > mustard > linseed. Among the CERM practices, ZTDSRR+ and ZTDSR treatments increased the grain yield of all the winter crops over PTR treatment, which was primarily attributed to higher soil moisture retention for an extended period. Grain yield increment with conservation tillage practices was highly prominent in safflower (190%) followed by lentil (93%) and chickpea (70%). Rice grain yield was higher (7-35%) under PTR treatment followed by ZTDSR treatment. Conservation tillage practices (ZTDSR, ZTTPR) reduced energy use (11-20%) and increased the energy ratio over conventional tillage practice (PTR), higher in rice-safflower, rice-lentil and rice-chickpea rotations. Higher net return was attained in rice-safflower and rice-chickpea rotations with ZTDSRR+ treatment. Predicted emission of greenhouse gases was markedly reduced in ZTDSR treatment (30%) compared to ZTTPR and PTR treatments. Hence, the study suggests that cropping intensification of rice-fallows with the inclusion of winter crops like chickpea, lentil, and safflower following conservation tillage practices (ZTDSRR+ in particular) could be the strategic options for achieving the higher system productivity, economic returns, and energy use efficiency with the reduced emission of greenhouse gases.

6.
Sci Rep ; 9(1): 9708, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273224

RESUMO

Fruit flies are the most serious economic insect pests of mango in India and other parts of the world. Under future climate change, shifts in temperature will be a key driver of ecosystem function especially in terms of insect pest dynamics. In this study, we predicted the voltinism of the three economically important fruit fly species viz., Bactrocera dorsalis (Hendel), Bactrocera correcta (Bezzi) and Bactrocera zonata (Saunders) of mango from 10 geographical locations in India using well established degree day approaches. Daily minimum and maximum temperature data were generated by using seven General Circulation Models (GCMs) along with their ensemble, in conjunction with the four representative concentration pathways (RCPs) scenarios (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) and three time periods (2020, 2050 and 2080) generated from MarkSim® DSSAT weather file generator. Historical data from 1969-2005 of these 10 locations were considered as baseline period. Under future predicted climates, model outputs indicates that all three fruit fly species will produce higher number of generations (1-2 additional generations) with 15-24% reduced generation time over the baseline period. The increased voltinism of fruit fly species due to increased temperature may lead to ≃5% higher infestation of mango fruits in India by the year 2050. Analysis of variance revealed that 'geographical locations' explained 77% of the total variation in voltinism followed by 'time periods' (11%). Such increase in the voltinism of fruit flies and the consequent increases in the infestation of mango fruits are likely to have significant negative impacts on mango protection and production.


Assuntos
Biodiversidade , Mudança Climática , Mangifera/parasitologia , Doenças das Plantas/parasitologia , Dinâmica Populacional , Análise Espaço-Temporal , Tephritidae/fisiologia , Animais , Especificidade da Espécie , Temperatura
7.
Zootaxa ; 3936(2): 261-71, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25947434

RESUMO

Tessaratoma javanica (Thunberg) (Hemiptera: Tessaratomidae) an important sucking pest of litchi is studied for supplementing information on its biology, morphometrics of life stages and mtCOI (DNA barcodes). More details generated on the study add to the description of stages namely egg, 1st to 5th nymphal instars and adults. The evaluation of morphometrics of the life stages reveal that the progression of growth is more during 2nd to 3rd nymphal stages, and these are critical as far as the growth and development is concerned. The life cycle takes about 141.7±4.25 days; eggs last for 12.81±1.4 days with 97.14±2.86% hatchability; and duration of 1st , 2nd, 3rd, 4th and 5th nymphal instars were 11.69±0.58, 7.23±0.2, 8.63±0.55, 13.04±0.55 and 26.31±0.97 days, respectively. In addition mtCOI analyses have been done employing standard 658 bp barcode fragments facilitating molecular diagnostics of the adults and other life stages and the phylogenetic tree with available sequence in the GenBank.


Assuntos
Heterópteros , Animais , Código de Barras de DNA Taxonômico , Ecossistema , Feminino , Heterópteros/anatomia & histologia , Heterópteros/classificação , Heterópteros/genética , Heterópteros/fisiologia , Índia , Estágios do Ciclo de Vida/fisiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...